
Tiling Triangular Meshes

Ming-Yee Iu

EPFL I&C

Abstract

1 Introduction

When modelling large graphics scenes, artists are not ex-
pected to model minute and repetitive features such as
grass or sand with individual pieces of geometry or in-
dividual texture images because it is simply too time-
consuming. Even if an artist were inclined to do such
a thing, all the detail would quickly exceed the amount of
memory available on graphics workstations, making the
scene difficult to render. Instead, various techniques for
using a small number of parameters or a small number
of images to generate large textures for large surfaces are
usually employed instead.

Tiling is one such technique, and it is commonly used
on square meshes, in particular on terrain modelled used
elevation maps. For a square grid, an artist need only
design a single image where the top edge lines up with
the bottom edge of the image, and the left edge lines up
with the right edge. This image can then be pasted on
top of each square in the grid to create an impression of a
single large seamless texture as shown in Figure 1.

Tiling arbitrary triangular meshes is much more diffi-
cult though because the number of triangular tiles needed
to tile the surface seamlessly can quickly grow to large
numbers. The same problem actuallly occurs during
the tiling of arbitrary quadrilateral meshes as well even
though the specific case of tiling a grid of squares is quite
simple. This paper examines approaches for reducing the
number of tiles that an artist needs to design in order to
tile arbitrary triangle meshes.

Figure 1: A grid of squares can be textured with a single
tile.

2 Previous Work

There is a significant body of work concerning the field of
automated texturing of large models. Lapped textures [4]
are a scheme for taking arbitrarily shaped texture patches
and repeatedly pasting them over the surface of a model
until it is completely covered. Other schemes exist for
taking a large texture image and searching over the image
to find triangle pieces that can be used to cover triangles
on the surface mesh in a seamless fashion [2]. And then,
of course, there are the entire fields of texture synthesis
and procedural textures that allow for the automatic gen-
eration of textures from a small number of parameters.
Note to self: maybe you should read some of those pa-
pers so that you can cite them here

The primary graphics paper on tiling triangular meshes
though is by Neyret and Cani [3]. It notes that the sim-
plest way of tiling a triangular mesh is to use a single
tile where each side of the tile is symmetrical and can
be matched seamlessly with any other side of the trian-
gle, such as in Figure 2. Although the tiling may end up
being somewhat repetitive, it is possible to mitigate this
problem by creating variations of the single tile with sides
that are the same as in the original tile, but with different
patterns in the center of the tile.

Figure 2: It is possible to tile an arbitrary triangle mesh
using a single tile.

The problem with using a single tile is that it severely
limits the design of the tile. The tile pattern must be
isotropic, the boundaries must be symmetric, and it be-
comes difficult to use advanced techniques such as ani-



mated tiles. The ideal tileset used to tile a mesh should be
one where each triangular tile can have three completely
different boundaries on each of its sides and where each
edge boundary may beoriented. Figure 3 shows an ori-
ented edge boundary in which a particular tile edge must
be matched with a corresponding complement edge in
order to form a seamless pattern. Unfortunately, as the
number of possible edge boundaries increase, the number
of possible tiles that might appear in the mesh increases
dramatically as well. For example, givenn different edge
boundaries (where an oriented edge boundary and its
complement count as two), there aren ways of creating a
tile where all the edge boundaries are the same,n(n− 1)
ways of creating tiles consisting of two different edge
boundaries, andn(n− 1)(n− 2)/3 ways of creating tiles
consisting of three different edge boundaries. This means
that there are a total ofn+n(n−1)+n(n−1)(n−2)/3
possible texture tiles that might appear in a mesh.

Figure 3: When oriented edges are used, one tile edge
must be aligned with a corresponding edge to form a
seamless pattern. Such an edge cannot seamlessly align
with itself or reflections of itself.

So if a triangle tileset with only one oriented edge
boundary were to be created (composed of an edge
boundary a and its complement a′), then four different
triangles are possible: (a, a, a), (a, a, a′), (a, a′, a′), and
(a′, a′, a′). Each tuple describes what combinations of
edge boundaries must appear on each side of a triangle
tile. In a tileset where each tile side can be different and
all edge boundaries are oriented,n is 6, meaning an artist
might need to create76 different tiles to successfully tile
a triangle mesh.

Although Neyret and Cani describe these issues with
tileset size, they then restrict themselves to considering
tilings involving only a small number of edge boundaries.
They also discuss ways of tiling an object with triangular
tiles independent of the object’s real geometry, and de-
scribe algorithms for automatically generating triangular
tile sets.

3 Minimizing the Number of Tiles

Although the expression given by Neyret and Cani de-
scribes all possible tiles that can be formed by generating
permutations of edge boundary types, the actual number
of tiles needed in a tiling can be much less if the tiling is
done carefully. For example, we previously stated that a

triangle tileset with only one oriented edge boundary re-
sults in four different tiles. In reality, it is possible to tile
an arbitrary triangle mesh using only two of those tiles—
(a, a, a′) and (a, a′, a′)—not four as previously suggested.
Note to self: is it worthwhile including the proof of this?

So is it possible to tile an arbitrary triangle mesh with-
out putting an undue burden on tile artists? And is it pos-
sible to calculate in advance the minimum number of tiles
that an artist needs to create?

To allow for the maximum flexibility in tile design,
we want to allow for triangle tiles where each side can
have different oriented edge boundaries. In fact, we want
the stronger condition that all sides of each triangle tile
musthave different oriented edge boundaries; otherwise,
it becomes trivially easy to minimize the number of tiles
needed by restricting our tiling to only use a single ori-
ented edge boundary and its complement, thereby allow-
ing for a tiling using only two different tiles.

In order to gain insight into this problem, we can re-
cast it as edge coloring [6]. First, consider the triangle
mesh to be tiled as a graph. We can then take the dual
of this graph where each triangle face becomes a vertex
and edges are drawn between vertices corresponding to
adjacent faces. Since each vertex in the dual comes from
a triangle face in the original mesh, the maximum degree
of vertices in the dual is three. An edge coloring of this
dual is an assignment of colors to the edges of the dual
such that for each vertex in the dual, all edges adjacent
to it have different colors. Figure 4 shows an example of
such an edge coloring. According to Vizing’s theorem,
a graph with maximum vertex degree three can be edge
colored using four different colors. It might also be pos-
sible to edge color the graph using only three colors, but
finding such a coloring is generally NP-complete, which,
given the large size of the graph, means that finding such
a coloring is essentially infeasible.

Unfortunately, the existence of a four edge coloring
doesn’t really help all that much. The most obvious way
of mapping the edge coloring back to a particular tiling is
to have each edge color correspond to a different oriented
edge boundary and its complement. This means that each
triangle tile will have a different edge boundary on each
of its side, but since the edge coloring doesn’t give any
particular insight into the orientations of these edges, we
have to assume the orientations are arbitrary. So given an
edge coloring of the dual using four colors—A, B, C, and
D—we can go back to the original mesh, and assign one
of eight oriented edge boundaries—a, a′, b, b′, c, c′, d,
and d′—to each tile side in a way that corresponds to the
four edge coloring such as in Figure 5. This means that
we might still require(8·6·4)/3 or 64 different tile types.

Interesting things happens though, if the dual is bipar-



a

b
c

b

c

ac

b

c

b

a

a

b

c

b

a

a
b

c

Figure 4: An edge coloring of the dual of a triangular
mesh. Note to self: this would be cooler if you could find
a mesh requiring a four edge coloring.

tite. Firstly, it becomes possible to edge color the dual
using only three colors, and this coloring can be found in
linear time [5, 1]. Secondly, because the triangles in the
original mesh are bipartite, it becomes possible to have
the edge boundaries of a given triangle all be oriented
in only one direction or the other. If all orientations flip
between adjacent triangles, then a consistent scheme of
orienting the edge boundaries is possible. Figure 6 shows
how the orientations of edge boundaries can be restricted
using a bipartite dual. This means that a triangle mesh
with a bipartite dual can be tiled in polynomial time us-
ing only four tiles: (a, b, c), (c, b, a), (a′, b′, c′), and (c′,
b′, a′).

Requiring an artist to design four separate tile images
in order to tile a triangular mesh is quite reasonable. In
fact, in practice, only three tile image need to be designed
because one pair of tiles can be created by starting with
a square tile and cutting it in half. As noted before, ori-
ented edge boundaries are allowed, and each side of a
triangular tile is allowed to be different, meaning there
is a lot of freedom in the design of the tileset. If tiling
using only four tiles results in a repetitive pattern, it is
easy to start with a three edge coloring of the dual and to
add additional colors selectively. This way, the number of
possible edge boundary types can be increased while con-
trolling the number of permutations of these edge bound-

a

b
c

b

c

ac

b

c

b

a

a

b

c

b

a

a
b

c

a

b
b'

c'

a'

c

b

b'

a
a'

c'

c
c'

b b'
a'

a

aa'

a'

a
a'
a

b'
b

c'
c

c
c'

b'b

c'
c

b b'

b'
b

Figure 5: A mapping of an edge coloring to different tile
types with arbitrary edge boundary orientations.

aries in tiles, thereby preventing the number of triangle
tile permutations from exploding. Unfortunately, all of
these great properties require that the original triangle
mesh have a bipartite dual. But what does it mean for
the dual of the triangular mesh to be bipartite? Does that
inhibit the geometry of models in some way? How is an
artist or application supposed to know how to create such
a mesh?

4 Triangle Meshes with Bipartite Duals

In fact, a triangle mesh with a bipartite dual is actually
equivalent to a triangular mesh where all interior verices
have an even degree. Here is the proof:

=⇒
Given a triangle mesh with a bipartite dual, assume

there exists at least one interior vertex with an odd de-
gree. There are an odd number of faces adjacent to an
odd degree vertex, and if we traverse these faces, we end
up with an odd cycle in the dual. But all cycles in a bi-
partite graph are even, resulting in a contradiction, so our
assumption must be false. Therefore, all interior vertices
in the triangular mesh must be even.
⇐=
This is another proof by contradiction. Given a triangle

mesh where all interior vertices have an even degree, as-
sume that the dual is not bipartite. Hence, there must be a
cycle in the dual that is odd. Take this cycle from the dual
and map it back to the original mesh. We now have a cy-
cle traversing over triangles as demonstrated in Figure 7.
This new cycle encloses a subset of the triangles in the
triangle mesh. Since the original cycle in the dual is odd,
the new cycle must cross over an odd number of edges.
Each one of these edges is incident to exactly one vertex



x

x

x

x

x

x

x

x

x

x

b

c

a

a
b

ca

c

a

b

b
c

a

b

b

b

c

a

a

a

c

b

c

b

c

a

ab

c
a

c

a
b

bc

a

b

b

b

c

a

a

a
c

b

c

a'

b'

c'

b'

b'
a'

b'

a'

c'

c'

a' b' a'

c'

b'c'

a'
c'

b'
c'

a'

a'

a'

b'

b'

c'

c'

c'

c

b

a

c

a'

b'

Figure 6: If a mesh has a bipartite dual, it can be tiled
using only four different tiles.

from the enclosed area. Let us consider this enclosed area
now. If we wanted to count the sum of the degrees of all
the vertices from the enclosed area, we would first sum up
the original degrees of all these vertices and then subtract
the length of the dual cycle (because these correspond to
edges that do not contribute to the enclosed area). Since
the original degrees of each of the enclosed vertices are
even, the sum of the original degrees of all these vertices
is also even. But because the cycle length is odd, the total
sum of the degrees of all the vertices from the enclosed
area is odd. Every edge in the enclosed area though must
be incident to two vertices from the enclosed area, mean-
ing that the total sum of the degrees of all vertices from
the enclosed area must be even. This is a contradiction,
meaning the the original assumption must be false, hence
the dual must be bipartite.

5 Transforming Meshes

When all the vertices in a triangular mesh have an even
degree, it is extremely easy to tile them with a small num-
ber of triangular tiles. And although the concept of such a
mesh is easily understood, it is not obvious how an artist
can be expected to create 3d models satisfying such con-
straints. Here, we examine two techniques for automati-
cally transforming triangular meshes to make each vertex
have an even degree.

Figure 7: When an odd cycle is mapped back to the orig-
inal triangle mesh (the triangles in the cycle are marked
in grey), it encloses a subset of the mesh (marked with a
thick black line) that can be analyzed.

For open surfaces, it is possible to simply add edges
connecting odd interior vertices to boundary vertices and
boundary edges (since we do not care about the degree of
vertices on the boundary). It is also possible to takes pairs
of odd vertices and join them with edges, thereby making
them both even. Figure 8 illustrates these two operations.
Unfortunately, not all pairs of odd vertices can be joined
in this way; for example, adjacent odd vertices cannot be
joined. And it is also not clear how to choose which ver-
tices to join so as to minimize the modifications made to
the mesh. This is important because applying these op-
erations results in the splitting of triangles. Not only do
split triangles result in increased rendering time because
of the greater number of triangles, but split triangles may
also be degenerate or of non-uniform size leading to in-
consistent tiling or visual artifacts.

In any case, for closed surfaces where there is no
boundary, the above operations may not be sufficient to
eliminate all the odd vertices from the mesh, meaning an-
other technique is needed.

Therese Biedl of the University of Waterloo came up
with an interesting construction that eliminates all odd
vertices in both open and closed surfaces. With this con-
struction, an extra vertex is added to the center of every
triangle in the mesh. These extra vertices are then con-
nected to the three vertices of the original triangle and to
the midpoints of the three edges of the original triangle.
Afterwards, each vertex in the resulting mesh will have
an even degree, and, provided that the original triangles
were well-formed, the resulting triangles will generally
have uniform sizes and shapes as well. Figure 9 demon-
strates how the construction works.

Unfortunately, the resulting mesh has six times as



Figure 8: Adding edges between odd vertices and the
boundary or between pairs of odd vertices will make
those vertices even.

Figure 9: By adding edges and vertices to every triangle,
it is possible to force every vertex to have an even degree

many triangles as before, meaning that it takes six times
as long to render the scene. There are only 64 ways in
which each subdivided triangle can be tiled though. And
if each such tiling is stored as a separate texture, then
it becomes possible to render the original non-divided
mesh using this new set of texture tiles, meaning there
will be no slowdown. If there is insufficient memory to
store that many texture, another alternative is to tile each
subdivided triangle in exactly same way, as shown in Fig-
ure 10. This single large texture is essentially a triangle
tile with a single non-oriented edge boundary on all sides,
and it can then be used to texture the entire original mesh.
Then if memory allows, the tiling of the subdivided mesh
can be selectively altered so that a limited number of ad-
ditional subdivided triangle tilings appear in the mesh.
In this way, one can control the exact number of gener-

ated texture tiles that will be needed to cover the original
mesh. So starting with the four original tiles, it’s possi-
ble to permute them to generate between 1 and 64 larger
tiles that can be used to tile the mesh. Of course, on more
modern hardware, one can simply combine the original
four tiles on-the-fly to generate the larger tiles using a
fragment program.

a b

c
c'

a

a

a'

a'

a'
b' b

c'
c

b'
b

cb' c'

Figure 10: Tiling a subdivided triangle in this way, results
in a single large triangular tile with identical non-oriented
edge boundaries

6 Conclusions and Future Work

Although the tiling of simple grids of squares is quite
easy, the tiling of arbitrary triangle meshes is actually
quite hard because if done improperly, an artist might
have to design a large number of tiles for the tiling. If
the tiling process is done carefully, however, it is possi-
ble to tile the an arbitrary triangle mesh using only four
tiles. An artist also has significant latitude in the design
of these tiles.

Unfortunately, this paper only lays out the theoretical
groundwork for these claims. To verify the practicality
of these techniques, it will be necessary to build a few
implementations. It is also unclear how these tiling tech-
niques can be extended to handle levels of detail and to
avoid aliasing artifacts. There are also theoretical issues
that could be examined more deeply such as finding exact
lower bounds on the number of tiles needed to tile triangle
meshes with non-bipartite duals or looking at the tilings
of arbitrary quadrilateral meshes, which might yield fur-
ther good insights into the problem

References

[1] Olivier Bodini and Eric Ŕemila. Tilings with trichro-
matic colored-edges triangles.Theor. Comput. Sci.,



319(1-3):59–70, 2004.

[2] Sebastian Magda and David Kriegman. Fast texture
synthesis on arbitrary meshes. InProceedings of the
14th Eurographics workshop on Rendering, pages
82–89. Eurographics Association, 2003.

[3] Fabrice Neyret and Marie-Paule Cani. Pattern-based
texturing revisited. InProceedings of the 26th annual
conference on Computer graphics and interactive
techniques, pages 235–242. ACM Press/Addison-
Wesley Publishing Co., 1999.

[4] Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Lapped textures. InProceedings of the 27th annual
conference on Computer graphics and interactive
techniques, pages 465–470. ACM Press/Addison-
Wesley Publishing Co., 2000.

[5] Alexander Schrijver. Bipartite edge coloring in
o(δm) time. SIAM J. Comput., 28(3):841–846, 1999.

[6] Eric W. Weisstein. Edge chromatic num-
ber. http://mathworld.wolfram.com/ EdgeChromat-
icNumber.html.


	Introduction
	Previous Work
	Minimizing the Number of Tiles
	Triangle Meshes with Bipartite Duals
	Transforming Meshes
	Conclusions and Future Work

