[Opening Slide]
Secure positioning verification in vehicular networks

[diagram?]

Normal secure positioning problem:

Have nodes

Determine position of other nodes such that no node can cheat

[diagram]

In vehicular networks

Each vehicle has GPS receiver and knows own position

Each vehicle periodically broadcasts its own position to all others, several times a second

Problem is a little different because each vehicle is already able to calculate their own position with reasonable accuracy

Other nodes only need to verify whether this reported position is correct

One obvious solution is simply to use full secure positioning, check if secure position matches reported position

Is there a lighter, less expensive technique for verifying positions that doesn’t involve recalculating the node’s position using some secure method?

That is Secure Position Verification
Idea that I had was to look at using obfuscation techniques for this task

In secure positioning, each node needs some way of measuring location properties of other nodes
Problem is that most measurements can be fooled

The usual secure primitive for doing secure positioning is distance bounding
Distance bounding is a technique for measuring distance between nodes

Basic premise is a simple ping-echo scheme

[diagram]

One node (verifier) sends ping, other (claimant) echoes, measure time delay, use speed of light to calculate distance traveled

Knowing distance to a node, restrict position of other node to a circle

Since nothing travels faster than light, then claimant node can’t appear to be closer than it is

Claimant can delay its response to appear further than it is

Problem: claimant can send echo before receiving ping

Solution: ping is random, claimant must send it back

Problem: someone else can reply to ping

Solution: claimant and verifier agree that claimant will modify the ping a certain way, which it will echo

Problem: Someone else can masquerade as the claimant or verifier
Solution: encryption and signatures of important parts

[diagram]

So one way that distance bounding can be used in secure positioning is verifiable multilateration
Three nodes
In triangle region, each one does distance bounding

Intersection of circle regions gives position

Node in middle cannot delay its reply without failing distance bounding

Problem

[diagram]

What makes verifiable multilateration secure is that with three verifiers, claimant cannot cheat on distance bounding without causing an alarm

But with three verifiers, we get full secure positioning

We wanted something more light-weight than that

 [diagram]

Is there a way to prevent a claimant from cheating on distance bounding without three nodes?
This is the way cheating normally works with distance bounding
When claimant replies to distance bounding requests normally

If it knows position of verifier, it can delay reply so as to be consistent with fake position

[diagram]

One answer: obfuscation

If it does not know position of verifier, it cannot do this

If it claims to be in fake position too close to verifier, can’t verify

[diagram]

If it claims to be in fake position further from verifier, it needs to know exact amount to delay by

So if position of verifier is hidden
Then if claimant pretends to be in a different position

It does not know how to reply to distance rebound request in a consistent way

Hence we have a scheme for verifying position of claimant with single verifier using a single distance bound

Verifier performs distance bounding on claimant

If it is consistent with reported position, then claimant must be where it says it is

Problem: 
Keeping position of verifier secret

Since verifier sends wireless signals, can measure angle of arrival etc.

[diagram]

One way around this:

Infrastructure-based scheme

Two nodes—one active, performs wireless communication with passing autos

Other is passive (or a stealth node), never performs wireless communication (therefore hard to track)

Two nodes are linked by a wire

Active node performs distance bounding on passing vehicles

Passive node listens for distance bounding communications, and checks for inconsistencies

Uses TDOA

[diagram]

By detecting time difference between distance bound request and reply, it can restrict position of claimant to an ellipse

Without knowing position of passive node, claimant does not know how to reply to distance bound so that ellipse is consistent with its claimed position

[diagram]

Simulation of 1 km stretch of road

Passive nodes can be on street lights (at 50 m intervals)

2m allowable error

Vehicle is at one position, tries to pretend to be in another position

Vehicle “exhaustively” tries all possible delays to distance bound request

Chooses the one with highest probability of success

[diagram]

Initial results:

50 m horizontal and 1 m vertical resolution

Not so good

[diagram]

Active node can do checking too

Still not so good

Problem is that passive nodes are too far

[diagram]
Possible to cheat many passive nodes all at once with a single delay because angle to passive nodes is all similar
[diagram]

Try pushing passive nodes further from road

16 nodes at (67+134n, 500) and (134n, -500)

[diagram]

With 2 m horizontal and 1 m vertical resolution

Poor vertical resolution

Push active node far from road

Trade horizontal security for vertical security

[diagram]

Still at 2 m horizontal and 1 m vertical resolution

Active node at (500, -500)

16 passive nodes at (67n, 500)

Can accuracy be further increased with a second passive node?
Yes, but then we have three nodes, and can do full multilateration again (full positioning)

Plus passive nodes need to be hidden and joined by wires

But interesting to look at this case anyways 

Because if positions of passive nodes are found, then it decomposes into this case

Such a configuration may have benefits over normal verifiable multilateration

Let’s do some simulation

 [diagram]
In simulations, we’ll have three nodes

Want to cover a large area, so nodes should be far apart

Multilateration has poor vertical resolution when far apart, so they need to push nodes far from road

[diagram]

So let’s look at what happens with regular multilateration

Vertical resolution of 1 m, horizontal resolution of 50 m

Active node at (500,-100), (300, 100), and (700,100)

[diagram]

Using stealth node idea, results are similar (but nodes have difficulty pretending to be far)
Center node performs distance bounding on vehicle

The two other nodes do the ellipse thing to verify node position
[diagram]

Weakness of verifiable multilateration is that nodes must be in triangular region

[diagram]

Stealth nodes does not have such a big problem

Even if position of passive nodes are known, a three node system provides superior secure positioning than normal verifiable multilateration

There is a security problem with directional antennae

Conclusion

[diagram]

With two nodes, can build an infrastructure system that uses obfuscation for secure position verification

Side benefit of obfuscation: limited protection against collusion
With three nodes, can build a system that is comparable in security to verifiable multilateration

Weaknesses:

Nodes must be joined by wired links

Nodes must be placed far from road (right-of-way, servicing, signal obstruction)

Nodes must be hidden (servicing)
