
AUTOMATIC
DEPLOYMENT SET
GENERATION

!Developer creates a software service on a
developer box

!Must now deploy the service to a server in a
data center

!Must calculate a deployment set--the set of
files that need to be transferred to the server

THE PROBLEM

!Copying all files has security and licensing
ramifications

!Developer may have forgotten which
middleware they are using and how
middleware is configured

!Can a tool automatically determine the
deployment set?

THE PROBLEM--DIFFICULTIES

!Look for cross-over ideas between source
code management and configuration
management

! In particular, look at the Vesta system

!Vesta has a mechanism for automatically
tracking build dependencies via NFS

INSPIRATION

!Runtime

!Binary

!Source Code

!Metadata

POSSIBLE APPROACHES

! I-Node

!System Call

!Application Specific

!Disk Blocks?

GATHERING RUNTIME DATA

! Run the application

! System calls will be logged

! Process and file dependencies will be uncovered

! User specifies which processes are important

! Tool will use dependency information to generate as
small a deployment set as possible

SYSTEM OVERVIEW

Prototype Tool Overview

! Fedora Core 3

! Configured as a web development system (3.96 GB)

! Log system calls using User Mode Linux

!Monitor process creation, exit, execve, file open, file
close, socket stuff

LET'S GET STARTED

DEPENDENCY FRAMEWORK

Fork
start: 6
end: 6

Execve
start: 7
end: 7

Execve
start: 9
end: 9

Fork
start: 636
end: 636

Execve
start: 637
end: 637

Fork
start: 8
end: 8

File Read (db.link)
start: 662 (open)
end: 665 (close)

Socket Connect
start: 655
end: 669

File: home.php

File Read
start: 642 (open)
end: 683 (close)

Process: init
start: 5
end: 10

Process: init
start: 8
end: 9

Process: init
start: 6
end: 7

Process: mysql
start: 9
end: 998

Process: httpd
start: 7
end: 1000

Process: httpd
start: 636
end: 637

Process: Php
start: 637
end: 690

File: db

FRAMEWORK OPERATIONS

!Who are the descendants of a set of processes?

!Who are the ancestors of a set of processes?

!What is the path between two nodes?

! Show me a graph of ...

! Show me the ancestors/descendants of a set of
processes up n levels deep

The usual approach:

Here's my amazing algorithm. Let's run it
against some tests. Look at how well it
performs!

BUT WAIT! WHAT ABOUT EVAL?

It is always possible to create a test case that
stymies the algorithm

Therefore, bad results are meaningless

It is always possible to tweak the algorithm to
pass a test case

Therefore, good results are meaningless

BUT WAIT! WHAT ABOUT EVAL?

Machine learning solution is impractical here.

Instead

! Code the algorithms beforehand

!Do not allow further code changes unless they are
bugs or procedure is documented as being a typical
issue that a user might have to deal with

BUT WAIT! WHAT ABOUT EVAL?

Actually, I was just lazy, but that previous
stuff sounds better

EVALUATION? THE REALITY

ls

login> root
> ls
> halt

TEST SEQUENCES

LAMP

login> root
> ifconfig eth0 192.168.1.3

Someone visits a web page that uses
PHP to read a MySQL DB

> halt

SANITY TEST

Take all accessed files as the deployment set

Problem: Certain system calls such as chdir,
readlink, and stat64 are not monitored

STRICT DEPENDENCIES

Mark certain processes as important, and
gather all dependencies. Use these files as the
deployment set.

Problem: Some files (e.g. /dev/console) are
read from and written to by many processes.
These had to be manually tweaked.

Problem: No system startup processes

DEPENDENCIES OF LS

/sbin/init

/sbin/init

/sbin/init

/sbin/init

/etc/rc.d/rc.sysinit

/sbin/initlog

/bin/ls /bin/dd /bin/touch

/etc/rc.d/rc

/etc/rc.d/rc

/sbin/initlog

/sbin/initlog

/etc/rc5.d/S04readahead_early

/etc/rc5.d/S04readahead_early

/usr/sbin/readahead

/etc/rc5.d/S10network

/etc/rc5.d/S10network

/etc/rc5.d/S10network

/bin/ls

/sbin/initlog

/sbin/initlog

./ifup

./ifup

/sbin/dhclient

/etc/rc5.d/S14nfslock

/etc/rc5.d/S14nfslock

/sbin/initlog

/sbin/initlog

/sbin/rpc.statd

/sbin/rpc.statd

/etc/rc5.d/S80sendmail

/etc/rc5.d/S80sendmail

/usr/bin/newaliases /bin/touch /sbin/initlog

/sbin/initlog

/usr/sbin/sendmail

/usr/sbin/sendmail

/etc/rc5.d/S96readahead

/etc/rc5.d/S96readahead

/usr/sbin/readahead

/sbin/mingetty

/bin/login

/bin/login

/bin/bash

/bin/bash

/bin/ls /sbin/halt

/sbin/shutdown

/sbin/shutdown /sbin/init

/etc/rc0.d/K90network

/etc/rc0.d/K90network

/etc/rc0.d/K90network

/bin/ls

/etc/rc0.d/S01halt

/etc/rc0.d/S01halt

/sbin/halt /bin/touch /bin/dd

/sbin/halt

STRICT DEPENDENCIES

init

Configure
System
Devices MySQL

console

ftpdOracle

bash

DEPENDENCIES & SYSTEM FILES

Add descendants of etc/rc.d/rc.sysinit,
/sbin/runlevel, processes with no binary.

Problem: Sub-processes that serve no useful
purpose are pruned, but parent processes still
check whether these children were
successfully exec'd or not.

Mysqld

Output
random
log data

tee

DEPENDENCIES & SYSTEM FILES

Do Real
Work

DEPENDENCIES & EXEC'D FILES

Any process that is exec'd is included in
deployment set (except those of Linux service
initialization process /etc/rc.d/rc)

Problem: Files that are written to but never
read (i.e. log files) may cause failures in key
processes because they cannot be created if
parent directory does not exist.

SUMMARY OF RESULTS

Test Size Functional
Strict Dependencies ls 86 MB No

LAMP 99 MB No

With System Files ls 94 MB Yes
LAMP 107 MB No

With Exec'd Files ls 97 MB Yes
LAMP 110 MB Yes *

All Accessed Files ls 138 MB Yes
LAMP 138 MB Yes *

Complete Installation ls 3.96 GB Yes
LAMP 3.96 GB Yes

!Take a Niche Problem

!Try the Obvious Solution

!Arrive at Expected Results

CONCLUSIONS

!Tool is not fully automatic

!User must intervene for tool to work well

!As such, the visualization capabilities of the
tool are most important because they allow
the user to understand problems and apply
corrections

CONCLUSIONS

!Handle multiple machines

!Support more platforms

!Deployment set diffing and merging

! Improved visualisation

!Meta-data

FUTURE WORK

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

