
Automatic Deployment Set Generation

15th June 2005

1 Introduction

Software configuration management has become an increasingly difficult problem in
the enterprise. As more and more business processes are computerized, the number of
different configurations that need to be maintained increase in number. As the number
of different software packages used by programs rise, the complexity of each individual
configuration increases. And as these packages are distributed across more and more
computers, the number of deployments of these configurations increase as well.

The technology for managing and understanding this increasing number of complex
configurations is still immature. Fortunately, the management of a large number of
interacting and complex source code files can be likened to the management of a large
number of interacting and complex software configurations. As such, the related field
of source code management can offer a great deal of insight into what tools are needed
and how they should work.

For example, the Vesta system [1] is an advanced source code management system.
One of its features is the automatic detection of build dependencies. By exporting an
entire file system using an NFS interface, it can track the usage of all files used during
the build process, and hence have complete knowledge of build dependencies.

A similar tool for automatically detecting the set of files needed for a certain soft-
ware deployment configuration would be similarly useful in a configuration manage-
ment system. One attempt at designing such a tool is examined here.

2 Use Case

During the development of a software application, a programmer may make ad hoc use
of a wide variety of different software packages. Different pieces of middleware might
be experimented with and discarded, or they might be kept but repeatedly reconfigured
and updated. Once the application is finished and can run successfully on a program-
mer’s machine, it might no longer be clear how to deploy the application on another
machine. The specific set of packages that need to be installed on a new machine and
the specific modifications needed to them might no longer be obvious. And simply
replicating the exact configuration of the programmer’s machine might also be infeasi-
ble because of the security risks of copying unnecessary developer files and programs

1



onto a server and because some of these unnecessary developer files and programs may
require expensive licensing.

In these situations, it might be useful to have a tool that can automatically deter-
mine the minimum set of files, hereafter referred to as thedeployment set,that need
to be replicated from a programmer’s machine onto a new machine in order to get the
software application to run there. Knowing this information, one can archive up all
these files into a single package, making deployment relatively easy.

This report investigates the feasibility of designing such a tool. The issues and
methods encountered during the design of a prototype are documented, and the ef-
fectiveness of the prototype in handling two test cases are used to infer whether the
strategies used by the tool can be scaled up to handle this general class of problem.

3 Possible Approaches

Determining the set of files needed by an application is not entirely straight-forward.
Not only is it necessary to trace the file usage of a particular application, but since an
application may rely on other applications and services, application dependencies and
the file usage of other applications must also be tracked.

Fortunately, the source code management field explored similar issues many years
ago. For example, tools have existed for Java [2] and Smalltalk for some time that can
calculate the minimum set of methods and classes needed to run a particular applica-
tion. By looking at a specific “main” class and tracking all possible method invocations
from it and descendant invoked methods, these tools can calculate the maximally reach-
able graph of methods and classes. This set of code is then a good candidate for being
the minimum set needed to run a particular application.

Unfortunately, extracting file and application dependency information is much more
difficult that extracting code dependency information. Whereas it is well-known how
to modify a compiler to output all method invocations of a program’s source code, it
is not obvious how to extract all file and inter-process interactions from a program’s
executable. It might be possible to examine strings from the executable and elsewhere
in order to try to piece together possible file names, but that approach is extremely
error prone. In fact, code dependency tools also tend to fail when having to deal with
reflection where method invocations are implicit in the code as opposed to explicit.

Instead, it is easier to trace the file usage and application dependencies of a running
program than to extract this information from a program’s binary. By gathering a trace
of a program’s execution, one can easily observe all of its inter-process communica-
tion with other programs and all files used. Unfortunately, a trace only describes the
files used during a particular execution run as opposed to describing all files that can
possibly be used during any execution run, meaning that if certain functionality isn’t
exercised, this functionality will not be described in the trace. Practically, though, as
long as a user runs a comprehensive set of tests against their program, the execution
traces should exhibit reasonable coverage.

The deployment set tool uses runtime traces as opposed to analysis of binaries.

2



4 Gathering Deployment Set Information

It is possible to gather traces of application file usage at many different levels:

• Collecting information at theapplication levelprovides the most detailed infor-
mation about application file usage, but doing so requires the modification of
many different programs and can be quite tedious. A system based on such a
design would also be unable to detect OS configuration information.

• Probingsystem callsrequires only the modification of the OS (as opposed to the
modification of several applications), but it can only detected a limited amount
of file usage information such as whether a file has been opened for reading or
writing. For applications based on Java, for example, where the Java VM may
search through many jar files looking for code, system call information would
not provide enough information to differentiate between jar files that are actually
used and jar files that are merely searched in.

• Finally, monitoring accesses to individuali-nodesprovides the most accurate
information about which files are being used while requiring the fewest modifi-
cations to OSes and applications, but it is unable to gather any useful information
about the usage patterns of those files.

The prototype deployment set tool uses system call probing to gather its configura-
tion information. Since Linux is widely used in servers and has available source code,
it was chosen as the basis for the tool. Although Linux has many systems calls related
to file usage and IPC, only a small subset of system calls and internal functions were
modified to log usage information: execve, fork, vfork, exit, open, close, openexec,
socket, listen, bind, accept, and connect. A small subset was chosen because modifying
all systems calls would have been prohibitive and unnecessary to judging the feasibility
of a prototype tool. Each log entry encoded information about accessed files, current
working directory, process id, and any new or expiring process ids.

In order to make the logging of system call information easier, the tool makes use
of User Mode Linux [3]. User Mode Linux is a virtual instance of Linux that can be
run in user-mode on a Linux computer. It is similar to virtual machine technology such
as VMWare or Xen. In order to use the tool, a user with a working configuration on
a certain machine, would copy the contents of the machine hard drive onto a virtual
drive. The user would then start User Mode Linux, using the kernel with the system
call logging modifications, from the virtual drive. While the user interacts with their
application on the virtual Linux instance, all information about processes and file usage
is logged to a file on the real Linux instance. This log file is then analyzed by the tool
to determine which files from the original machine need to be copied to new machines
to run the same applications. The use of User Mode Linux means that a user does
not need to modify their own OS to use the tool. Since the tool attempts to emulate
the original environment of the user’s machine in an instance of User Mode Linux as
closely as possible, applications should behave identically under User Mode Linux as
on the user’s machine.

3



As noted previously, the user must “exercise” their application such that the appli-
cation in such way that all desired functionality is used. So, for example, supposing a
user has a web service running on their machine, they must then run the web service
within the tool and make use of the web service. If the user doesn’t make use of some
remote administration features of the service, the tool will not be able to detect which
files are needed for those administration features and might not include those files in
the deployment set.

5 Tool Evaluation

In order to evaluate the effectiveness of the tool at determining the deployment set, a
simple set of tests were created.

A Fedora Core 3 system, configured with Apache, Postgresql, MySql, Php, pro-
gramming tools, and desktop tools, was installed on a system. The size of the installa-
tion was 3.96 GB.

Then, the effectiveness of the tool at detecting the set of files needed to run two
different test sequences were evaluated:

• ls: The system is started, the root user logs into the system from a terminal, and
this user runs ls followed by halt.

• Linux-Apache-MySQL-PHP (LAMP):The system is started, and the root user
logs into the system from a terminal, and configures the networking on the sys-
tem. Another user then uses a web browser to access a page running on the web
server of the system. This web page is within a user account and makes use of
php to read some data from a MySql database. Afterwards, the root user runs
halt.

The prototype tool is first used to gather file and process dependency information
during the running of those test sequences. Then, the tool is instructed to calculate the
deployment set needed to run a specified set of processes. For the first test sequence,
the tool is instructed to calculate the deployment set needed to run ls and halt. For the
second test sequence, the tool is instructed to calculate the deployment set for ifconfig,
httpd, and halt. The effectiveness of the tool can then be evaluated by the size of the
deployment set and by whether the deployment set is viable configuration or not (a
deployment set is considered viable if the set of steps from the test sequence can be
repeated without errors).

Due to incompatibilities between User-Mode Linux and Fedora Core 3, the User-
Mode Linux environment is configured slightly differently than the original Fedora
Core 3 environment. In particular, the /lib/tls libraries are removed and SELinux en-
forcement is disabled.

6 Straight-Forward Algorithm

To generate baseline results, the prototype tool was initially set-up to use a simple
algorithm for determining the deployment set. The algorithm simply takes all files ac-

4



cessed during the execution of a test sequence as being the deployments set. “All files”
includes objects mapped into the filesystem like device nodes and FIFO objects, sym-
bolic links, and destinations of symbolic links. If a directory is accessed, the directory
is included in the deployment set but none of its contents. Hard links are ignored, and
files from certain special directories such as /sys and /proc are not copied. The entire
contents of the /dev directory is also added to the deployment set.

For the ls test sequence, the deployment set was 138 MB in size. Some services
such as cups, sshd, sendmail, and httpd could not start because of missing files and
directories. The missing files and directories resulted from the fact that certain system
calls such as readlink, chdir, and stat64 were not being logged to capture file depen-
dency information. It was possible to complete the test sequence using the generated
deployment set, however.

For the LAMP test sequence, the deployment set was also 138 MB in size. The
same set of services that were not able to start in the ls test sequence were also not
able to start in this test sequence. In order to allow Apache httpd service to start, it
was necessary to create an empty /var/www/html directory. After the creation of this
directory, it was possible to complete the LAMP test sequence using the deployment
set.

The large sizes of the resulting deployment set for even the simple ls test sequence
suggest that the sets includes many unnecessary services started during the Linux boot
sequence; nonetheless, the 138 MB size of the deployment sets is much smaller than
the 3.96 GB size of the complete installation. Reducing the size of the deployment
set further requires aggressive pruning of unnecessary executables. A better algorithm
would detect which processes are not essential to the running of the service of interest
and remove those executable files from the deployment set.

7 Pruning Algorithms

7.1 Dependency Model

In order to build the pruning algorithm described in the previous section, the tool needs
to be able to track dependencies between processes and files. To aid in this task, the
algorithm first converts the log of system calls into a graph.

Figure 1 shows a sample graph. Nodes of the graph consist of either processes or
files. Edges are directed and denote a dependency relationship between two nodes. The
following are the different possible dependency relationships:

• When a process forks another process, the child process is considered dependent
on the parent.

• When a process execs a different program, the new program is modelled as a new
process node which is dependent on the original process (although technically,
the new program is the same process as the original process)

• When a process opens a file for reading, the process is considered to be depen-
dent on that file

5



Fork
start: 6
end: 6

Execve
start: 7
end: 7

Execve
start: 9
end: 9

Fork
start: 636
end: 636

Execve
start: 637
end: 637

Fork
start: 8
end: 8

File: db

File Read (db.link)
start: 662 (open)
end: 665 (close)

Socket Connect
start: 655
end: 669

File: home.php

File Read
start: 642 (open)
end: 683 (close)

Process: init
start: 5
end: 10

Process: init
start: 8
end: 9

Process: init
start: 6
end: 7

Process: mysql
start: 9
end: 998

Process: httpd
start: 7
end: 1000

Process: httpd
start: 636
end: 637

Process: Php
start: 637
end: 690

Figure 1: Sample graph of extracted dependencies

6



• When a process opens a file for writing, the file is considered to be dependent on
the process

• When a process creates a TCP socket connection to another process, the initiator
of the connection is considered to be dependent on the other process

File dependencies are annotated with the pathname used to access the file. All
edges and process nodes are annotated with information about the time when they
came into existence and when they were destroyed. Clock information is not recorded
in the system call log file; instead, line number within the system call log is used as a
substitute for time. These are the rules for deciding the start and end times of edges
and process nodes:

• A process begins when it is forked or execed. It ends when it exits or when it
execs a different program

• A socket connection begins when the connect system call is called and ends when
one side of the connection calls close

• A file dependency begins when a file is opened and ends when a file is closed.
For executable and library files, a file dependency begins and ends when the file
is linked into the process

• A fork dependency begins and ends when the fork system call is made

• An execv dependency begins and ends when the exec system call is made

• When a new process node is created after a fork or execv, the new node does not
inherit file or socket dependencies

Unfortunately, since not all file system calls are logged, it is not possible to create
a completely accurate graph representation of file and process dependencies. In par-
ticular, although file opens and file closes are logged, system calls for duplicating file
handles are not, so it is difficult to know whether a close system call will, in fact, close
all references to a particular file within a process. It is possible to infer this information
based on what file handles are closed during process exit, but this is not absolutely safe
because other objects that are not tracked such as pipes might cause confusion. For-
tunately, for this particular application, an accurate graph representation is not strictly
necessary, so a good approximation of the representation is sufficient.

7.2 Pruning

Once the prototype tool has constructed a dependency graph, the user must mark some
of the nodes as being important. The tool can then calculate which nodes and edges
of the graph are not needed by the marked nodes. For the ls test sequence, the /bin/ls
and /sbin/halt process nodes as well as all descendant nodes of the /sbin/halt process
nodes were marked as important. For the LAMP test sequence, the /usr/sbin/httpd,
/sbin/ifconfig, and /sbin/halt process nodes as well as all descendant nodes of the
/sbin/halt process nodes were marked as important.

7



Initially, a Strict Dependencies algorithm was used for pruning. In this algorithm,
all paths leading from marked nodes are followed, without regard to edge types, node
types, edge timings, or node timings, until the full reachable subset is calculated. This
subset is then selected as the deployment set. After a bit of experimentation, it was
found that the /etc/mtab and /var/run/utmp files as well as the entire /dev directory
subtree could not be included in the dependency calculations because those files were
often read from and written to by many different processes but not actually used for data
interchange between processes (e.g. many processes read and write to /dev/console but
do not use the device to pass data between each other). Figure 2 shows the minimum set
of processes needed by the ls test sequence as calculated using the Strict Dependencies
algorithm.

Unfortunately, the deployment sets for both the ls and LAMP test sequences are
non-functional. During the boot sequence, several processes are started that configure
device drivers and the OS environment. Because these processes do not transfer data to
or from other processes in the test sequences, the dependency graph does not capture
their importance to the execution of other processes. As a result, the filesystems in
these configurations do not mount correctly, and they end up being read-only.

To rectify this problem, it is necessary to mark the descendants of the /etc/rc.d/rc.sysinit
and /sbin/runlevel processes as well as all descendants of processes with no recorded
binary as being important in the Strict Dependencies algorithm.

After this change the ls test sequence is able to start and complete successfully.
The LAMP test sequence is not able to start MySQL successfully. This failure results
from the fact that MySQL invokes the /usr/bin/tee program, but doesn’t actually use
the output of the program. With the strict dependencies algorithm, if the output of a
program isn’t used, then the program will not be included in the deployment set. This
causes problems because when MySQL attempts to exec /usr/bin/tee, the exec will fail,
and MySQL will terminate because of this error even though /usr/bin/tee is not essential
to the running of MySQL.

One possible solution is to include all invoked child processes in the deployment
set regardless of whether or not they are deemed essential. Unfortunately, this results in
all processes being included in the deployment set. However, because certain processes
do not terminate if an attempt to execute a child process fails, the child processes of
those processes can be excluded from the deployment set. In particular, the /etc/rc.d/rc
start-up process satisfies these conditions. The /etc/rc.d/rc process invokes all services
and daemons at start-up, so pruning children of this process essentially removes un-
necessary Linux services. Unfortunately, more fine-grained pruning of unnecessary
programs is not possible under such a scheme.

Other possible solutions include trying to use timing information in calculating
process dependencies (so that child processes can be removed from the deployment set
if the original process can fail during the execute without causing dependency problems
elsewhere) or to create “fake” stub binaries that simply exit immediately after being
executed.

After the prototype tool was modified to include all child processes, the deployment
sets calculated for the two test sequences were, for the most part, functional. The
LAMP test sequence needed only minor adjustments:

8



/s
bi

n/
in

it

/s
bi

n/
in

it

/s
bi

n/
in

it

/s
bi

n/
in

it

/e
tc

/r
c.

d/
rc

.s
ys

in
it

/s
bi

n/
in

itl
og

/b
in

/ls
/b

in
/d

d
/b

in
/to

uc
h

/e
tc

/r
c.

d/
rc

/e
tc

/r
c.

d/
rc

/s
bi

n/
in

itl
og

/s
bi

n/
in

itl
og

/e
tc

/r
c5

.d
/S

04
re

ad
ah

ea
d_

ea
rl

y

/e
tc

/r
c5

.d
/S

04
re

ad
ah

ea
d_

ea
rl

y

/u
sr

/s
bi

n/
re

ad
ah

ea
d

/e
tc

/r
c5

.d
/S

10
ne

tw
or

k

/e
tc

/r
c5

.d
/S

10
ne

tw
or

k

/e
tc

/r
c5

.d
/S

10
ne

tw
or

k

/b
in

/ls

/s
bi

n/
in

itl
og

/s
bi

n/
in

itl
og

./i
fu

p

./i
fu

p

/s
bi

n/
dh

cl
ie

nt

/e
tc

/r
c5

.d
/S

14
nf

sl
oc

k

/e
tc

/r
c5

.d
/S

14
nf

sl
oc

k

/s
bi

n/
in

itl
og

/s
bi

n/
in

itl
og

/s
bi

n/
rp

c.
st

at
d

/s
bi

n/
rp

c.
st

at
d

/e
tc

/r
c5

.d
/S

80
se

nd
m

ai
l

/e
tc

/r
c5

.d
/S

80
se

nd
m

ai
l

/u
sr

/b
in

/n
ew

al
ia

se
s

/b
in

/to
uc

h
/s

bi
n/

in
itl

og

/s
bi

n/
in

itl
og

/u
sr

/s
bi

n/
se

nd
m

ai
l

/u
sr

/s
bi

n/
se

nd
m

ai
l

/e
tc

/r
c5

.d
/S

96
re

ad
ah

ea
d

/e
tc

/r
c5

.d
/S

96
re

ad
ah

ea
d

/u
sr

/s
bi

n/
re

ad
ah

ea
d

/s
bi

n/
m

in
ge

tty

/b
in

/lo
gi

n/b
in

/lo
gi

n

/b
in

/b
as

h

/b
in

/b
as

h

/b
in

/ls
/s

bi
n/

ha
lt

/s
bi

n/
sh

ut
do

w
n

/s
bi

n/
sh

ut
do

w
n

/s
bi

n/
in

it

/e
tc

/r
c0

.d
/K

90
ne

tw
or

k

/e
tc

/r
c0

.d
/K

90
ne

tw
or

k

/e
tc

/r
c0

.d
/K

90
ne

tw
or

k

/b
in

/ls

/e
tc

/r
c0

.d
/S

01
ha

lt

/e
tc

/r
c0

.d
/S

01
ha

lt

/s
bi

n/
ha

lt
/b

in
/to

uc
h

/b
in

/d
d

/s
bi

n/
ha

lt

Figure 2: Sample graph of extracted process dependencies
9



• As before, it was necessary to create a /var/www/html directory

• Two files were written to by Apache but never read from: /etc/httpd/logs/errorlog
and /etc/httpd/run/httpd.pid. Since their contents were not necessary to the run-
ning of Apache, the files were not included in the deployment sets. Unfortu-
nately, the directories holding these files were not included in the deployment
sets either, so Apache could not create new copies of those files.

The prototype tool can be easily modified to automatically detect and correct the
issues noted.

In both test sequences, the tool was able to detect that Postgres was not needed. The
tool also did not include many shutdown scripts needed to properly shutdown services
such as httpd and mysql during system shutdown. This is worrisome, but did not seem
to cause problems with the test sequences.

Table 1 summarizes the behaviours of the different pruning algorithms. All of the
pruning algorithms were able to create a smaller deployment set for the ls test sequence
than for the LAMP test sequence. The inclusion of child processes in a deployment
set only increased the size of the sets by 3 MB, which suggests that simply pruning
out unnecessary services invoked at start-up is sufficient for removing the majority of
unnecessary files.

Test Sequence Size Functional?

Strict Dependencies
ls 86 MB No
LAMP 99 MB No

With System Files
ls 94 MB Yes
LAMP 107 MB No

With Inclusion of Unnecessary Child Processes
ls 97 MB Yes
LAMP 110 MB Yes*

All Accessed Files
ls 138 MB Yes
LAMP 138 MB Yes*

Complete Installation
ls 3.96 GB Yes
LAMP 3.96 GB Yes
* with minor tweaks to the deployment sets

Table 1: Pruning Results

10



8 Related Work

Although there are other papers dealing with deployment of services in data centres
[4], these papers focus on the actual act of copying files to data centre computers and
the configuring of services. They inherently assume that the developers know which
set of files are necessary for a service.

Like the prototype tool, there are other tools for better understanding the Linux
boot process such as the BootChart project [5]. The BootChart project profiles the time
spent in various processes during system start-up in an attempt to identify possible
bottlenecks. Unlike the prototype tool, this project focuses more on boot optimization
than on understanding dependencies and pruning unnecessary services.

The technique of tracing of system calls used by the prototype tool to gain a greater
understanding of system behaviour is well-known. One common use of system call
tracing is for anomaly detection in intrusion detection systems [6]. By looking for
sequences of system calls that differ from the normal behaviour of applications, one
can identify possible attacks by an intruder.

Also, the examination of IPC system calls to understand process dependencies has
been examined before in the context of trying to improve process scheduling [7]. By
tracking the IPC data flows between various processes at a very fine-grained level,
it’s possible to make more intelligent scheduling decisions that prevent high priority
processes from having to wait for lower priority processes, even during very complex
interactions.

9 Conclusion

The prototype tool described in this report is very effective at generating deployment
sets and removing unnecessary services from those deployment sets. The tool is not
entirely automatic though, and requires user intervention and interaction to be truly
effective. Because the tool operates at the system call level, it is not able to understand
subtle process interactions, such as devices or files that are both read and written to by
different processes but not used to exchange data or such as child processes that do not
serve any useful purpose to a parent process, but which might cause a failure of the
parent process if they are excluded. In the most complex cases, the tool can simply
suggest using the entire set of accessed files as the deployment set, but much smaller
deployment sets are possible if the user help the tool in its analysis.

The amount of user expertise needed to use the tool is likely less than the amount
of expertise needed to manually create a deployment set. With the tool, the user merely
needs to run the tool, identify unnecessary or missing processes, find the errors in
the dependency graph, and iterate until a suitable deployment set is created. When
manually creating a deployment set, the user must deeply understand the interactions
of the service they want to deploy in order to recall its dependencies, find the locations
of all the files needed by the service and its dependencies, gather all of these files into
a deployment set, and iterate if the user has forgotten important details.

In the future, the tool should be revamped to trace more system calls and to provide
more facilities for identifying and correcting deployment set errors. The tool should

11



also be ported to other systems such as Windows or Java. The tool might also benefit
from being extended to deal with configuration issues such as identifying files that need
to be changed for a deployment set to run on a different machine, merging different
deployment sets, or automatically adjusting a deployment set to handle differences
between the deployment machine and the original machine.

References

[1] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. The vesta approach
to software configuration management. Technical Report 168, Compaq Systems
Research Center, March 2001.

[2] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experience
with an application extractor for java. InOOPSLA ’99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 292–305. ACM Press, 1999.

[3] Jeff Dike. The user-mode linux kernel home page.http://user-mode-
linux.sourceforge.net/.

[4] Vanish Talwar, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and Guey-
oung Jung. Approaches for service deployment.IEEE Internet Computing,
9(2):70–80, 2005.

[5] Ziga Mahkovec. Bootchart: Boot process performance visualization.
http://www.bootchart.org.

[6] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
A sense of self for Unix processes. InProceedinges of the 1996 IEEE Symposium
on Security and Privacy, pages 120–128. IEEE Computer Society Press, 1996.

[7] Haoqiang Zheng and Jason Nieh. Swap: A scheduler with automatic process de-
pendency detection. InProceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI-2004), San Francisco, CA,
March 29–31 2004. Usenix Association.

12


	Introduction
	Use Case
	Possible Approaches
	Gathering Deployment Set Information
	Tool Evaluation
	Straight-Forward Algorithm
	Pruning Algorithms
	Dependency Model
	Pruning

	Related Work
	Conclusion

